If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+64x-960=0
a = 1; b = 64; c = -960;
Δ = b2-4ac
Δ = 642-4·1·(-960)
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{31}}{2*1}=\frac{-64-16\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{31}}{2*1}=\frac{-64+16\sqrt{31}}{2} $
| 12x-(3x+5)+20=4x | | 4(x+2)2x=4x-2 | | 20-6=4k=2-2k | | (-2)(6x)=(-4) | | 3=0.25x+11 | | xX2/5=15 | | 13x+4=4x-15 | | -13a-29=12a+2 | | (2c+8)/3=9 | | (4p-28)+(3p-8)+2p=360 | | 6g+7=8g-5 | | 2t+20+148+t-3=360 | | 3x+9-8x-8=24 | | 37+2s-40+45+2s-50=360 | | 2x+8-4x-4=30 | | 3/4x+7=0 | | (P+43)+p+44+p+9+3p=360 | | 9/18y+2/18=3/18 | | 2/18y+2/18=3/18 | | P+44+p+9+p+43+3p=360 | | W=2h | | 4k-(-8)=16 | | 20-27-7x=2x+18 | | 0.25x-12=18-0.55x,x | | 2p+22+3p-23+111=360 | | x^2+50x-525=0 | | 15(6-g=) | | 3x+8+2x+12+x=180 | | 3x+3x+31+36+113=360 | | 3t+2t+4t+30+33=360 | | 81+35+140+64+s=360 | | -3-6(x+7)=42-6x |